skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gürsoy, Emre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Various machine learning-assisted directed evolution (MLDE) strategies have been shown to identify high-fitness protein variants more efficiently than typical wet-lab directed evolution approaches. However, limited understanding of the factors influencing MLDE performance across diverse proteins has hindered optimal strategy selection for wet-lab campaigns. To address this, we systematically analyzed multiple MLDE strategies, including active learning and focused training using six distinct zeroshot predictors, across 16 diverse protein fitness landscapes. By quantifying landscape navigability with six attributes, we found that MLDE offers a greater advantage on landscapes which are more challenging for directed evolution, especially when focused training is combined with active learning. Despite varying levels of advantage across landscapes, focused training with zero-shot predictors leveraging distinct evolutionary, structural, and stability knowledge sources consistently outperforms random sampling for both binding interactions and enzyme activities. Our findings provide practical guidelines for selecting MLDE strategies for protein engineering. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026